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1.0. INTRODUCTION

The use of titanium structural components to take advantage of their high strength-
to-weight ratio is well established in the aerospace industry. In many instances
where titanium forgings are used, a large portion of the forging weight must be
machined away to produce the desired finished configuration. The use of pre-
cision cast titanium components offers the economic advantages of a near net
shape process,

Since commercial development of titanium casting began in the 1950's, significant
progress has been made in the size and complexity of production castings., Titan-
ium casting furnaces capable of pouring several hundred pounds of molten alloy
are in regular use today. Despite these advances, the casting of titanium pre-
sents obstacles to be overcome that are not encountered in the casting of other
engineering materials,

The extreme reactivity of molten titanium with atmospheric gases and solid ox-
ides precludes the use of conventional vacuum induction melting and casting
equipment that is used to precision cast other alloys. In order to form a pool of
molten titanium without contamination, the skull melting process, originally
developed by the U.S. Bureau of Mines, is used. This is a consumable electrode
process, the details of which will be discussed later in this report. The main
effect of the use of this equipment is that very little superheat can be employed
and the molten alloy at the time of casting is just above its liquidus temperature.
This results in low alloy fluidity and rapid freezing as the alloy enters the mold.
The low fluidity places limits on casting of thin sections and requires an exces-
sive amount of gating to feed the casting, thus adversely influencing the cost
effectiveness of the process.

The present program is an attempt to develop a reduced-cost method of producing
titanium precision castings by using a mold rotating on its own axis on a centri-
fuge to provide a centrifugal force assist to the alloy in filling the mold and to
reduce gating and machining stock to a minimum,

The component selected to demonstrate the process is the compressor casing for
the T700 engine. This part, shown in its finished machined form in Figure 1, is
currently produced from a forging (see Figure 2) which has the two casing halves
arranged end-to-end. The finished casing is 9 inches long with a maximum di-
ameter of 11 inches and weighs 8. 8 pounds.

The objectives of the program can be summarized as follows:

1. To produce the T700 compressor casing as a one-piece centrifugal
casting,

11
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Figure 2. Forging Used to Produce Compressor Casing
(Typical Weight 65 Pounds)

To cast the exterior contour as closely as possible to net shape, This
includes casting integrally as many features on the outer contour that
are welded to the machined forging as is economically practical.

To investigate the use of expendable and pernianent mold systems.

To obtain the required material property data to demonstrate the suit-
ability of the cast mechanical properties for the intended application,

To demonstrate the suitability of the cast casing by engine testing.

To demonstrate the cost effectiveness of the casting approach,

13
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2.0. PROGRAM SCOPE

The program was divided into four phases, each of which contains several work
elements. An outline of the scope of the program follows,

2.1 Phase I - Casting Process Development and Manufacturing Planning
2.1.1 Task I - Casting Technique Selection

This task included the selection of an economical precision casting process.

Mold systems selected for evaluation included conventional ceramic shell molds
and permanent molds. Optimum combinations of mold temperatures and cen-
trifuge speeds were determined using temporary tooling designed for this purpose.

2.1.2 Task II - Casting Process Development

In this task, additional castings were produced in order to "fine tune" the casting
process. Specimens for tensile, stress-rupture, high- and low-cycle fatigue and
crack propagation testing were cut from castings and tested. Engineering draw-
ings were issued for the cast and machined casing. A quality control plan covering
the type and frequency of inspection for production parts was established. Per-
manent casting and inspection tooling was designed and built, A sample casting
was poured using this tooling and was inspected.

2.1.3 Task II - Data Presentation

A review of Phase I progress was presented to the Government and an interim
technical report was issued.

2.2 Phase IA - Integrally Cast Ducts
2.2,1 Task I- Casting Development

Separate pattern tooling to form three air bleed ducts was designed and built,
Sample casings containing integral air bleed ducts were cast and evaluated,

2.2,2 Task II - Data Presentation

A review of the dimensional and metallurgical evaluation of the integrally cast
ducts was presented to the Government.

14




2.2,3 Task III - Design, Fabrication and Proof of Production Tooling

Based on an analysis of sample castings produced with integrally cast air bleed
ducts and the wall thickness that would be required, a decision was made to
terminate the casting of integral ducts.

2.3 Phase II - Fabrication and Engine Test Evaluation

2.3.1 Task I - Fabrication of Engine Test Hardware

Tooling modifications were made and pilot production castings produced and
dimensionally inspected. Two castings were finish machined and shipped for
engine test.

2.3.2 Task II - Engine Test Evaluation

Two finished cast casings were assembled into test engines. A 60-hour assur-
ance test and a 150-hour demonstration test were performed, respectively.

2.3.3 Task LT - Data Presentation
Data generated in Phase II was presented to the Government in a briefing,

2.4 Phase II - Preparation of Technical Data Package

A technical data package containing all pertinent drawings and documents des-
cribing the T700 compressor casing and the process used to produce it was
prepared.

15




3.0, DISCUSSION

3.1 Phasel

3.1.1 Task I- Casting Technique Selection
3.1.1.1 Description of Ingot and Casting Equipment

Because of the extreme reactivity of titanium, great care must be taken to pre-
vent the contact of the molten alloy with both the atmosphere and refractory
oxides. After titanium is extracted from its ore in the form of sponge it must

be consolidated into an electrode using a vacuum consumable remelt furnace,
shown schematically in Figure 3. A mechanically compacted bar composed

of sponge, reprocessed material (gates, sprues, bar stock, turnings) and alloy-
ing elements serves as one electrode and a water-cooled copper crucible as the
other in a D, C, circuit. The resulting arc causes a molten pool of titanium to
form directly under the arc and solid titanium to form against the cooler crucible
walls. The bar is gradually advanced and the crucible is filled with a solid ingot.
It may be necessary to repeat this process to guarantee chemical homogeneity.
Using this method, only a small fraction of the total mass of titanium is molten
at a given time and it is in contact either with the partial vacuum or the thin shell
of solid titanium formed against the crucible wall,

In order to produce a cast part from the refined electrode, one is faced with the
same problems but in addition, two more:

(1) The liquid bath must be large enough to fill the desired mold cavity, and
(2) the molten titanium will come in contact with the mold material, which may

. be a source of contamination, The apparatus used to produce modern production

titanium castings is the skull melting furnace, a development of the U.S. Bureau
of Mines, shown schematically in Figure 4. Again, a water-cooled copper cruc-
ible is used within a vacuum chamber to contain the molten bath which is sur-
rounded by a solid skull of titanium, The bottom of the crucible is covered with
solid titanium, either virgin material or the residue of a previous melt. The
casting chamber is evacuated; melting is initiated by striking an arc between the
preweighed electrode and the titanium in the bottom of the crucible. When the
desired amount of alloy is molten, the remaining electrode stub is quickly with-
drawn and the crucible tilted to fill the mold,

16
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Sinizer and Adams ! have presented a thermal analysis of a typical skull melting

system. Using their assumptions of spherically symmetrical, steady heat flow ‘
from a localized central source, through the bath and into the skull, the bath temp-

erature T at any location is given by !

& 3.41 P (Rm - 1)

T-Tm="or Kr Rm |
where r = distance from heat source, ft :
K = thermal conductivity, Btu/ft hr F 4
P = power transmitted through the liquid, watts
3.41 P = power transmitted through the liquid, Btu/hr
Rm =  radius of liquid zone, ft
Tm =  melting point, OF

and the average temperature, Tav, is given by

Figure 5 shows the temperature vs. distance from the arc for power inputs of 2
KW and 4 KW and illustrates some general relationships involved in skull melting.
The melting point shown is an approximation which is meant to be representative
of a typical titanium alloy, which in this case melts at a temperature in excess
of 3200°F, From the equations it is clear that superheat is proportional to the
power input and inversely proportional to the thermal conductivity. The thermal
conductivity of titanium alloys is lower than that of most iron and nickel alloys;
this is a beneficial condition for the use of skull melting, since it prevents ex-
cessive heat loss to the skull, One of the major reasons for the inability of ob~
taining much superheat is that as soon as the power is shut off prior to pouring,
a steady-state condition no longer exists and the steep thermal gradient between
bath and skull is rapidly dissipated, resulting in a rapid lowering of bath temp-
erature,

3.1.1,2 Mold Systems

One of the first factors that had to be established in this phase of the program
was the type of mold to be employed. The choice was between a conventional

1, Sinizer, D.L, and Adams, C. M., Jr., METALLURGICAL REQUIRE MENTS
AND PRODUCTION TECHNIQUES FOR TITANIUM CASTINGS, Trans. Am.,
Foundrymen's Society, V. 63, pp. 313-316, 1955,
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ceramic shell mold formed around a wax pattern and a metallic permanent mold,
A discussion of the details of each process follows.

3.1.1.2.1 Ceramic Shell Process (See Flowchart, Figure 6)

An injection die is machined from aluminum alloy. Dimensionally stable,
resin-filled wax is injected or extruded into the die cavity to form a pattern,
The pattern is a duplicate of the desired casting except that it is larger by the
anticipated amount of metal volumetric shrinkage (about 1%). After inspection
and correction of any surface imperfections the wax gating system is joined

to the pattern by wax welding. The wax assembly is then dipped into a ceramic
slurry, coated with fine ceramic flour and dried. The dipping, stuccoing and
drying is repeated until the desired mold thickness is achieved. During drying,
chemical reactions between the ceramic particles and the binder cause high
strength to be developed in the shell. The wax is then removed by steam
autoclaving, flash firing or by using a solvent,

Prior to casting, the mold is preheated, with typical temperatures ranging from
1800° to 2000°F. The mold is transferred to the casting chamber and filled.
After solidification the gating system is cut off and the gate stubs ground. After
casting, the inner diameter is rough machined to remove less dense material
(including gas, shrinkage). The casting is then chemically milled to remove
any surface contamination. The part is inspected using visual, fluorescent
penetrant and radiographic techniques. Any indications beyond drawing limits
are repaired by local grinding and welding.

The casting is annealed, dimensionally inspected, given a final fluorescent pen-
etrant and radiographic inspection, marked and shipped.

3.1.1.2.2 Permanent Mold Process (See Flowchart, Figure 7)

A mold is machined from steel, copper or other suitable alloy. A mold coating
may or may not be used. The unheated mold is transferred to the casting cham-
ber and filled, After solidification, gating material is removed and after cast-
ing the inner diameter is rough machined, Visual, fluorescent penetrant and
radiographic inspection are performed.

Bench grinding and repair welding are done, as required.

The casting is annealed, dimensionally inspected, given a final nondestructive
inspection, marked and shipped.
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It is clear that the use of a permanent mold would result in significantly fewer
operations to be performed, since all pattern and shell building tasks are elim-
inated and the chemical milling is not required. This is due to the molten
titanium not coming in contact with any refractory material and the resulting
absence of surface reaction. In addition, the high thermal gradient present
through the use of a high thermal conductivity mold would tend to produce a
more homogeneous microstructure and possibly improved mechanical proper-
ties.

On the minus side, a metallic mold would be more massive and therefore more
difficult to adapt to a centrifuge, more expensive than an equivalent wax in-
jection die and less amenable to design changes. Inclusion of external details
of the casing as integrally cast features would be much more difficult.

3.1.1.3 Casting Trials - Ceramic Shell Mold

In order to develop a baseline process in the shortest time, temporary pattern
tooling was used. Figure 8 shows the wooden master pattern used in Phase I of
the program. The pattern was constructed to produce castings to a temporary
casting drawing (6033T04) and was split to facilitate removal from the mold.

Each master pattern half was placed in a flask and an epoxy resin poured around
it to form a wax pattern mold, shown in Figure 9. The photo also shows the
epoxy inner diameter core. The core contains a pin which locates it axially

and radially during wax injection.

Wax patterns were injected in the epoxy mold, and after cooling, the two mold
halves were separated for pattern removal. For the initial castings, features
that are currently welded to the outer contour of the production forged casing
were cast integrally., These features included the actuator pads (three versions),
three air duct bosses, two borescope bosses, and triangular ECU support
brackets, all of which were wax welded to the casing pattern. The wax patterns
were processed through the conventional dipping and stuccoing cycle to produce
the ceramic shell molds. Two molds were dewaxed and heated to 1550°F, The
resulting molds were single-wall shells,

The interior of the casting chamber is shown in Figure 10, Initial castings were
made by locating the mold on the predetermined center of the centrifuge and
clamping it down at the aft flange area.

After locating the mold on the turntable and clamping it down, the chamber was
closed, the vacuum pumps started and the centrifuge accelerated to 500 rpm,
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Figure 8. Wooden Master Pattern Used for hitial Trials

Figure 9, Epoxy Wax Pattern Mold Used for Iitial Trials
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Figure 10, Casting Chamber Interior

Figure 11,

Filled Shell Mold After Removal From Casting Chamber
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After melting a portion of the consumable electrode slowly to form a "skull'" of
solid titanium along the copper crucible, the power input and electrode feed rate
were increased and the balance of the portion of the electrode to be cast was
melted rapidly. The electrode holder was then retracted and the molten alloy
poured in approximately 3 seconds. The mold was allowed to cool for about

10 minutes before breaking the vacuum. Figure 11 shows a filled mold after
removal from the casting chamber,

After mechanically removing the mold material and chemically milling approx-
imately . 020 inch from all surfaces in order to remove any products of reaction
present, the castings were visually inspected. The external surface features
had all completely filled and the surface finish was acceptable. The casting wall
thickness, however, showed excessive variation, ranging from about . 030 to
over 1 inch. It was clear that the roughness of the outer contour of the ceramic
shell precluded accurate location of the shell with respect to the center of the
centrifuge, causing metal to be forced to the side of the mold located at the
maximum distance from the center of rotation.

In order to alleviate the condition causing uneven wall thickness described above,
two fixtures were designed and built in order to provide controlled pilot diam-
eters at each end of the shell mold. Figure 12 is a photograph of the fixture to
be used in dipping the wax pattern.,

Upper and lower aluminum plates were machined to fit the wax pattern per
Figure 13, The plates are connected by a centrally located aluminum rod,

The dipping fixture is left on the wax pattern during shell building and is re-
moved after the shell has cured. Since a gap exists between the wax pattern
and fixture at the forward and aft flanges, the resulting shell mold has two
smooth concentric surfaces at the forward and aft ends suitable for use as loca-
ting surfaces, as shown in Figure 14,

Figure 15 shows the steel fixture which was designed for use during casting.
The pouring fixture consists of a bottom plate which is machined to accept the
shell mold aft locating surface and which is attached directly to the centrifuge
turntable, and an upper '"can" section which accepts the shell mold forward
locating surface. An outer flange on the fixture provides a surface for clamping
the mold and fixture to the centrifuge. The result is a mold which is located
concentrically and perpendicularly to the centrifuge.
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Figure 12, Wax Pattern in Dipping Fixture

A third mold was prepared using the dipping fixture for shell building. The
mold was used to pour a third casting (4490-55) using the pouring fixture, with
all other parameters the same as for the first two castings.

There was no appreciable wall thickness variation on this part. The outer
radial contours showed a maximum runout of . 028 inch, considerably better

than expected for a part made from temporary tooling.

3.1.1.4 Casting Trial - Permanent Mold

At this point, a permanent low-carbon steel mold was sand cast and machined
for an evaluation of the effectiveness of a chill mold, Copper was a candidate
for the mold material because of its high conductivity and heat capacity which
would give high thermal gradients, a fine microstructure and possibly improved
mechanical properties. Steel was chosen, however, since it was felt to be a
more practical material for this application in a production environment. A
steel mold would be more resistant to warpage, less susceptible to damage and
more easily weld repaired than copper. In addition, previous trials of casting
titanium into sections of thick-walled (. 500 inch) steel pipe showed no surface re-
action between the titanium and steel and relatively easy removal from the mold.
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Figure 16. Permanent Steel Mold

The steel mold is shown in Figure 16. Due to the weight of the mold (200
pounds), the maximum angular velocity that could be obtained on the centrifuge
without damaging the equipment was 350 rpm. This velocity was used on
casting 4491-S1, After pouring the casting and allowing it to cool, considerable
difficulty was experienced in removing the casting from the mold. Although
some draft allowance had been included in the forward flange, aft flange and
first and second stage boss areas, the axial shrinkage of the casting upon cool-
ing caused it to be held tightly in the mold. Heating of the mold was required
to cause the mold to expand sufficiently to free the casting.

The surface of casting 4491-S1 was significantly rougher than that of the shell
mold castings. Surface pitting and cold shuts were present, as were heavy
indications of flash at the mold parting lines. It is possible that the use of a
suitable mold wash could improve the surface finish to some extent, but most of
the surface discontinuities appeared to be due to molten metal turbulence and
splashing which caused droplets to freeze quickly on the mold wall. These
droplets were then surrounded by the balance of the molten metal which did

not contain enough heat to remelt the droplets. The result was a large number
of negative surface discontinuities which would not be permissible for the in-
tended application without subsequent finishing.
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3.1.1.5 Decision - Mold System

Based on the foregoing experience, the ceramic shell mold was chosen as the
better mold system for use in the balance of the program, The decision was
made for the following reasons:

1, The shell process allows the casting to be designed closer to net shape.
Generous draft angles would have to be built into a permanent mold.

2. The shell process offers much greater flexibility for integrally casting
complex features on the exterior surface of the casing, thus offering a
greater cost reduction potential.

3. Tooling for the shell process is less costly, less massive and lends
itself to modification far more easily than a permanent mold. Wax injec-
tion tooling for the shell process can be machined from aluminum, while
the permanent mold would require at least a carbon steel and possibly a
high-temperature alloy for durability.

4. The shell process is more practical for maintaining constant pouring

conditions. Maintaining constant mold temperatures for successive pours
with a permanent mold would present particular difficulties,

3.1.2 Task II - Casting Process Development

3.1.2.1 Process Development

Nineteen castings were poured using temporary pattern tooling in Phase L
The pouring conditions and results are given in Table 1.

Iitially the aft section of the casing was cast solid as shown in Figure 17 since
it was felt that a problem would exist in feeding metal through the . 200-inch-
thick conical section present in the finished part (Figure 18). This would re-
quire an additional turning operation to produce the final configuration. Radio-
graphic inspection of parts cast with the aft end solid showed that shrinkage
cavities formed as shown in Figure 17. Attempts at changing the centrifuge
velocity were unsuccessful in solving the problem since the large mass present
created a thermal center (or ""hot spot') with resulting cavity shrinkage due
solely to the mold geometry.

In order to produce a casing having a net shape aft end, a steel ring of suitable

configuration was fabricated and installed on the bottom plate as shown in
Figure 19 for castings 4490-S6 and -87.
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Figure 17,

Shrinkage Cavity Location
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Two centrifuge angular velocities, 200 and 400 rpm, were used on these pours.
The resulting castings did not contain shrinkage cavities but did have small shrink-
age indications in the aft flange outer diameter and in thick sections such as the
horizontal flanges. In addition, the 200 rpm speed was shown to be insufficient

to fill completely the forward end of the casting. It was concluded that the steel
ring was causing excessive chilling of the molten metal and that a net shape aft

end would have to be made an integral part of the shell mold in order to prevent
this condition. The 400 rpm gave good mold filling without excessive centrifuge
vibration,

One casting (4490-S8) was made with three air bleed ducts cast integrally. Tool-
ing was constructed to produce separate duct patterns which were wax welded
onto the main body pattern. The resulting casting with integral ducts is shown

in Figure 20. The wall thickness of the ducts was measured as . 075 after chem-
ical milling, This is over twice the thickness of the present sheet metal ducts
and was felt to be necessary to provide adequate metal flow to fill the ducts.
Visual examination of the casting showed that the ducts had filled completely,

but radiographic inspection revealed shrinkage indications well in excess of draw-
ing limits in the flanges at the duct tips. The result of casting the ducts integrally
showed promise, and it was decided to conduct further trials in Phase IA (des-
cribed later in this report) on a parallel and noninterference basis with the main
program, since it was anticipated that considerable changes in metal feeding
would have to be made.

One part (4490-S10) was cast with reduced poured metal weight (31 pounds
compared to 35 pounds for previous castings) in an attempt to reduce the amount
of material to be removed during the rough machining operation. This would
lead to lower material and machining costs but would also represent a reduction
in gating volume., Radiographic and visual inspection of the inner surface showed
that the cavity shrinkage previously encountered was still present but was closer
to the inner diameter surface, making machining clean-up marginal. It did not
appear that the small reduction of metal weight was justified since the risk of
scrapped parts and excessive weld repair would definitely be increased.

To provide a source of specimens for materials tests, four additional castings
were poured using the conditions of S/N 4490-S7., After annealing, test specimens
were machined from them, Complete information relative to material tests and
the results obtained are presented in Appendix A. The results show that all cast-
ing properties are fully adequate for the application.

The pattern of heat flow at the aft end of the casing immediately after the molten
metal filled the mold is shown in Figure 21, Since the thermal conductivity of
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Figure 20.

Compressor Casing with Integral Air Ducts Made from
Temporary Tooling
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the steel centrifuge plate was on the order of 12 times that of the ceramic shell
material at the pouring temperature, and since the mass of the centrifuge was
several times that of the shell, it is apparent that excessive heat was being lost
in the axial direction to the centrifuge through the open bottom of the mold. The
effect of this heat loss was to counteract the desired directional solidification
pattern in which the outer diameter of the aft flange would solidify first with
freezing progressing radially inward, Conduction to the centrifuge caused rapid
axial freezing progressing in the forward direction. These competing heat flows
were seen as the major reason for the presence of the shrinkage cavity problem,
since the inner diameter area was forced to solidify too rapidly and molten metal
was not available to act as a reservoir to compensate for the volumetric shrink-
age occurring upon solidification in the balance of the casting.

An additional concern on the previous castings has been minor surface imper-
fections (cold shuts and flow lines) which have appeared on the outer casing con-
tour. This condition resulted from molten metal entering the mold, striking

the flat spinning centrifuge plate and spraying droplets against the cooler mold
wall, causing immediate freezing of the droplets., At the completion of pouring,
the last metal to enter did not remelt the frozen droplets (since it was quite close
to the solidus temperature) and a surface imperfection resulted.

As a result of both the shrinkage cavity and splash conditions, a mold similar to
that shown in Figure 22 was constructed and used for casting 4490-S16. Sheet
wax was used to form a bottom on the wax pattern and a wax "dome'" was formed
on the centerline. When the shell was built these features became integral parts
of the mold. When the mold was placed on the centrifuge, a layer of fibrous in-
sulating material was placed between the mold and centrifuge. The purpose of

the mold bottom and insulation was to reduce axial heat losses, and the purpose

of the dome was to "'split" the incoming metal steam and direct it radially outward.,

Radiographic evaluation of casting 4490-S16 revealed that the shrinkage cavity
was greatly reduced in size and shifted aft. When the casting was sectioned after
rough machining, the cavity was found to be in excess of . 125 inch below the in-
ner surface and hence it would not be fully removed during finish machining.

The surface finish of the casting was greatly improved over previous efforts and
would easily meet the 125 RMS planned drawing requirement,

An additional casting (4499-S14) was made in an attempt to form the aft end web
close to net shape. The steel ring that was previously used in an unsuccessful
attempt to cast the . 200-inch nominal thickness web was mounted farther aft in
this trial to provide a . 500-inch nominal web. This was a compromise between
a net shape aft end and a completely solid aft end. As with earlier attempts to
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use the steel ring the aft outer flange showed numerous shrinkage indications,
indicating that metal was being chilled excessively while flowing over the ring.
It was concluded that future attempts to form a net shape or near net shape aft
end would require the aft web to be formed by the mold rather than by a steel
ring.

For the next casting (4490-S18), the temporary tooling was modified as shown
in Figure 23 to incorporate a ring in the pattern die and form a net shape pat-
tern (shown in Figure 24). When casting 4490-S18 was poured, the shrinkage
cavity found on previous castings was eliminated but a side effect to the change
was a small amount of centerline shrinkage indications in the borescope bosses
and the horizontal flanges. A similar but more severe condition existed when
attempts were made on previous castings to feed through the , 200-inch-thick
conical section.

In order to permit more efficient feeding of the borescope bosses and split
flanges, it was decided that the next castings to be poured would incorporate

ribs as shown in Figure 25 to accomplish this, Castings 4490-S19 and S20 had
feeding ribs attached and gave the best soundness of any method used to this
point, Both the shrinkage cavity and centerline shrinkage indications were elim-
inated. It was decided to incorporate the supplemental feeding ribs in the pilot
production castings to be made from permanent tooling,

On the last casting to be poured from temporary tooling (4490-S21) a design
change was incorporated to add extra stock as shown in Figure 26. This mater-
ial addition resulted from a change in the mating part and requires a rabbet

to be machined into the aft flange of the compressor casing more inboard than
previously. It was felt that the added material could be a source of shrinkage
indications, since it must be fed by metal passing through the . 200-inch-thick
conical section shown in Figure 26, Radiographic inspection of 4490-S21 showed
that the aft flange did have shrinkage indications which were larger than in pre-
vious castings but that in the area of the feeding ribs the flange was free of de-
fects. To establish the properties of the cast alloy and to verify their adequacy
for use in the compressor casing, test specimens were machined from castings
after annealing (2 hours at 1300°F in vacuum), The tests are described in Appen-
dix A,

3.1.2.2 Tooling and Fixtures

Pilot production wax pattern tooling was designed and built using the data gathered
in Phase I - Task I, The die, shown with the top plate removed in Figure 27, was
machined from aluminum and contains the basic outer casing contour, the eight
actuator pads, two borescope bosses and three bosses to which the air bleed
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ducts are welded. The stage 2 actuator pads are formed by removable aluminum
inserts (2 per pad) and the stage 1 actuator pads are formed by solid inserts (1
per pad) and soluble wax cores (1 per pad) due to the impossibility of withdrawal
of a solid insert on one side of the pad. The solid inserts and soluble wax cores
are shown in Figure 28,

An inspection fixture was built and installed at the subcontractor's plant. The
fixture was capable of holding the casting on the primary, secondary and tertiary
datum points and sweeping the outer contour with a template made . 025 larger
than the nominal casting contour. The gap between template and casting could
then be measured with go/no-go ball gages to determine the true outer contour.
This concept is shown in Figure 29,

While sound in theory, this fixture proved to be slow in operation and not capa-
ble of measuring all areas of the casting. The design was simplified to one which
simply held the casting in contact with the datum points. The outer contour of
the casting nested in the fixture was then measured on a three-axis computer-
controlled measuring machine, This arrangement allowed a complete inspection
of the outer contour of both halves of a casting to be performed in approximately
one hour, compared to at least one working day for the manual inspection.

Based upon previous work, all permanent tooling castings were poured using a
mold preheat of 1800°F and a rotational speed of 350 rpm, Casting variables on
pilot production castings are given in Table 2. A view of the first casting, 4580-
S1, is shown in Figure 30. After the first four castings were poured, dimen-
sional inspection was performed. Since the inspection fixture was not completed
at this time, diameters were checked using conventional layout techniques in
order to obtain a measure of casting size. The nominal diameters are given

in Figure 31 and the actual measured diameters are shown in Table 3.

Considerable dimensional variation is evident in the diameters of the first four
castings (4580-S1, -S2, -54 and -85) indicated in Table 3, particularly when the
diameters at the casting aft area (e.g., 7.032 diameter) are compared to diam-
eters in the forward area (e.g., 8.660 diameter). It is evident that a greater
amount of contraction as a result of solidification occurred at the aft end than at
the forward end. In addition, there is a total range of . 065 between the largest
and smallest of the four castings measured at the 7, 032 diameter, The diametral
variation was traced to wall thickness variations in the four castings which exist
for a number of reasons. Among these reasons are:

1. Metal temperature variations causing differences in metal fluidity.




Figure 28,

Pilot Production Pattern Tooling Detail Showing Soluble
Wax Core and Solid Insert
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2. Mold temperature variations which also affect metal fluidity.

3. Rotational speed variations which can cause differing distributions
of molten metal in the axial direction.

4, Differences in the amount of metal retained in the crucible and
tundish,

The approach taken to control the dimensional variation on the next seven castings
was to employ a central sprue as part of the mold as shown in Figure 32, The
effect of this addition is to create a double-wall mold and, rather than allowing
the inner surface of the casting to be formed by centrifugal force, to maintain

the casting thickness constant between successive pours. When such a system
was used on casting 4580-S7, it was observed that the contraction in diameter
was much more regular (see Table 3). However, the observed wall thickness on
this casting was insufficient to allow sufficient rough machining stock on the inner
contour for removal of surface discontinuities and still provide finish machining
stock. To correct this situation the patterns were modified on the next six cast-
ings to add additional inner diameter machining stock. On castings 4580-S9,

-S514 and -S16 an extra . 250 was added and on castings 4580-S10, -S11 and -S12
an extra .500 was added. The addition of .500 additional stock proved to be ex-
cessive, since filling the resulting mold cavity required more metal than it was
possible to pour using existing equipment, The three castings with the additional
. 250 added had fully formed walls and were much improved dimensionally. In
Table 3 the deviations from nominal blueprint dimensions for these castings are
given,

Although the foregoing changes were beneficial from a dimensional standpoint,
they caused a reintroduction of shrinkage indications in heavy sections, partic-
ularly the centerline of the horizontal flanges at the aft end. Although these areas
were repairable by benching and welding, economic considerations dictated that
the presence of these indications be eliminated in the casting process.

The approach taken to eliminate the heavy-section shrinkage is illustrated in
Figure 33. The double-wall mold previously employed was modified to form a
cylindrical central sprue, which had the effect of enlarging the lower end of
the previously conical sprue, thus shortening the gates. The diameter of the
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gates was increased to 1, 000 inch from , 500 inch. Shortening the gates and in-
creasing their diameter was designed to remove any restriction to molten metal
flow and to give the metal in the sprue adequate time to feed the outer sections
of the casting. This modification was successful and the resulting castings are
described in the discussion of Phase II - Task L

3.1.3 Task III - Data Preséntation

The results of Phase I were presented to Government personnel in October 1977,

3.2 Phase IA - Integrally Cast Ducts

3.2.1 Task I - Casting Development

As discussed previously, one of the Phase I castings (4490-S8) was cast with
simulated air bleed ducts having wall thicknesses of . 075 after chemical milling.
These ducts had filled completely but the flanges at the duct tips were of unac-
ceptable radiographic quality due to shrinkage indications. In pursuing the
casting of additional casings with integral ducts in this phase of the program, it
was felt that both an increase in duct wall thickness and additional gating would
be required to insure internal soundness,

A total of four castings were poured in this task, with two variations of gating
used. The as-cast wall thickness of the ducts was . 170, which would yield a

. 120 wall after chemical milling. The two gating variations are shown in Figures
34 and 35. In the first (Figure 34) all ducts were fed with . 750 square cross-sec-
tion gates running from the casing outer contour to the forward side of the ducts
in the case of the circular, flanged (customer bleed) ducts and running from the
nearest horizontal flange to the duct mid-section in the case of the oval, un-
flanged (start bleed) duct. In addition to the gates, a .125 diameter wax rod

was attached to the start bleed duct tip for mechanical support and to provide a
drain area during dewaxing.

The second gating method (Figure 35) eliminated the gate on one of the customer
bleed ducts and substituted a . 750 cubic riser at the duct tip. The use of a riser
rather than a gate would be an attractive alternative since it would entail no dis-
turbance of the casing outer contour during removal and eliminate the high heat
concentration at the point where the gates joined the casing, an area of high
shrinkage defect potential.




Figure 34. Pattern with Integral Ducts (Gating Method 1)

Figure 35. Pattern with Integral Ducts (Gating Method 2)
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All four castings were poured using the process developed in Phase L A mold
temperature of 18000F and a rotational speed of 350 rpm were used., All ducts
filled successfully, as seen in Figure 36.

Destructive and nondestructive examination showed that neither gating system
was acceptable. The gated ducts had no defects in the immediate vicinity of the
gates but did have shrinkage defects on the opposite side of the duct from the
gate. The risered ducts had heavy shrinkage defects, indicating that the risers
were not remaining molten long enough to provide metal feeding. The most dis-
turbing result was that the gates attached to the outer casing contour and to the
horizontal flange had caused . 250 diameter shrinkage voids at the point of
attachment,

Dimensionally, no evidence of distortion of the duct location was found. It ap-
pears that the ducts solidify so rapidly with so little thermal gradient from cas-
ing to duct that little or no thermal stresses are present in the ducts.

In an attempt to produce duct wall thicknesses which are more acceptable from a
weight standpoint, an as-cast casing with integral ducts was masked on all areas
except the duct walls and . 050 was chemically milled from the remaining sur-
faces. If successful, this would yield . 070 thick ducts which would still be twice
the present sheet metal duct thickness. The resulting walls were not acceptable
since several areas were milled through the wall, This condition was due to
thin areas in the as-cast wall and to areas containing shrinkage defects being
attacked more severely than sound areas.

3.2,2 Task II - Data Presentation

The results of Task I were presented to Government personnel in February 1978,
A recommendation was made that further work on integrally cast ducts be ter-
minated for the following reasons:

1. Acceptable metallurgical quality in the ducts was not obtained.

2. Gating from the casing outer contour caused soundness and di-
mensional problems in the casing itself.
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Figure 36, Casting with Integral Ducts
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3. The required duct wall thickness would generate a weight penalty
estimated to be in excess of .5 pound.

4, Extra labor costs involved with attaching and removing the

extra gating made the inclusion of ducts of dubious economic
benefit.

3.3 Phase II - Fabrication and Engine Test Evaluation

3.3.1 Task I - Fabrication of Engine Test Hardware

3.3.1.1 Permanent Tooling

Based upon the results of castings poured in Phase I, the pattern tooling was
modified to provide a cylindrical central sprue, 1. 000 inch radial gates, addi-
tional inner wall machining stock and feeding ribs at the aft end outer diameter
as part of the wax pattern assembly. Since the additional gating capacity pro-
vided smoother metal flow, it was found that the.dome in the center of the mold
at the aft end which had been employed in Phase I castings to improve the sur-
face finish was no longer required and this feature was not incorporated into
the permanent tooling.

In order to provide more control on wax pattern size and shape, a simple man-
drel conforming to the size and shape of the wax pattern as it is removed from the
injection die was built., The mandrel is placed in the still warm pattern and the
pattern is allowed to contract around the mandrel and maintain its size and
shape as it cools. In addition, the aft flange of the wax pattern is clamped to a
flat plate during cooling to maintain the flange flatness.

3.3.1.2 Pilot Production Castings

Four pilot production castings were poured to prove out the tooling modifications.
Fluorescent penetrant and radiographic inspection showed that the parts met
metallurgical requirements.

The entire casting process is outlined in the Manufacturing Methods Report,
Appendix B of this report,

3.3.1.3 Dimensional lnspection

In order to obtain information on the degree of dimensional repeatability of the
cast casings, the outer radial contour of the pilot production castings has been
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inspected on a Bendix three-axis computer-controlled measuring machine using
a setup fixture to position the castings on the required datum points. The outer
contour was inspected in detail since its variation has a direct effect on the
final machined wall thickness variation.

The method of establishing the datum system for the cast casing is shown in
Figure 37, FEach casing half is dimensioned independently of the other and is
joined to the other by the horizontal flanges which have a considerable amount
of extra stock to allow for cutting and machining losses. As shown in Figures
37(a) and 37(b), two forward points at a fixed radial distance and orientation
establish the center of a circle. Similarly, two aft points at a fixed radial dis-
tance and orientation establish the center of a second circle. The line connecting
the two centers is the axis of the casing half, Note that we are establishing an
axis and not a plane so that the casting can always be made to contact four loca-
ting pins at the set radii. The secondary datum is a plane passing through the
axis and equidistant from the two circumferential datum points on the horizontal
flange face. The distance from the circumferential points need not be a fixed
value but merely equal at each horizontal flange so that the casting is oriented
properly circumferentially. The tertiary datum is a plane perpendicular to the
primary and secondary datums and passing through the axial point located at the
Stage 1 variable vane bosses. These datums are used throughout the processing
of the casing, since they are used to create pattern tooling, inspect castings
and machine the finished part dimensions,

Inspection of the outer contour is performed by holding the casting in a fixture
to locate the three datums and measuring radii. Figure 37(c) shows the re-
sults of checking contours that exhibit plus or minus deviations from the nom-
inal radius, A perfectly round but small casting would show negative radial
deviations from nominal at the horizontal flanges and positive deviations 90 de-
grees from the flanges. The situation would be reversed for a large casting.

Of course, the effect of any actual out-of-roundness would be additive to the size
effect,

In practice, the part is positioned in the fixture and clamped down, after which
the first half contour is measured. The resulting readings give a combined
measure of size and position since they are measured relative to a theoretically
perfect circle whose axis is perfectly located on center,
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a.) Datum Point Location b.) Section A-A

A
X Radial Points (Primary)
o Circumferential Points (Secondary) [
A Axial Point (Tertiary)

c.) Size Effect
.........

Nominal Radius
eeeee0e Above Nominal Radius
- = === Below Nominal Radius

Figure 37. Casting Datum System and Effect of Size Variations on Apparent
Roundness
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The data in Table 5 summarizes the 540 readings made on 6 casing halves. The
dimensions denoted (a), (b), (c), and (d) are features which are subsequently
machined. All other dimensions remain in the cast condition. The location of
the inspection stations is shown in Figure 38.

The column in Table 5 giving = 20 around the measured mean can be expected
to encompass in excess of 95% of future readings, assuming the tooling and
process are unchanged. Of particular interest is the -20 limit. Since less
than 2. 5% of all readings could be expected to be below this level, it could be
considered a practical goal for the minimum casting wall. It should be noted
that the prediction that 2.5% of the readings will fall below the limit on as-cast
casings does not imply that a thin-wall final product will result in this fraction
of the casings. It does imply, however, that that fraction of total casings will
need to be adjusted in the machining setup by an outward modification of radial
position. As seen in Table 2, the degree of spread around the mean is quite
uniform from forward to aft casing locations. The first location, at 1.315 axial
height, is located on a compound curve, which probably contributes to its greater
variability. In addition, the four machined dimensions contain adequate machin-
ing stock, and considerably more variation in their radial readings can be toler-
ated. Bearing in mind that radial position prior to machining is easily adjusted,
only two locations, those at axial heights of 3.060 and 3. 910, give indication that
a future radial enlargement could be desirable. At this time no modification to
these dimensions is considered necessary. It is planned to finish machine addi-
tional parts before full production begins. If dimensional modification of any
area appears to be necessary, it will be made at that time,

3.3.1.4 Machining

A summary of planned operations for the machining cycle of the cast compressor
casing is shown in Appendix B.

During the processing of the first finished casing, difficulty was experienced with
adherence of the aluminum-silicon plasma-sprayed coating when operation 370
(drilling of variable vane holes) was performed. The coating tended to chip at
the circumference of the vane holes. As a result, the coating had to be stripped,
the flowpath reprepared and the casing recoated. The sequence of coating and
finish machining was established with the intent of plasma spraying the casing in
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its most stable condition (as early as possible in the machining cycle) in order to
minimize distortion. On the second finished casing, the sequence of operations
was revised to call for preparation of the flowpath and application of the coating
after all finish machining operations were complete. This resulted in perfect
coating adherence and no flowpath distortion. Two views of the finished machined
casing are shown in Figures 40 and 41.

The weight of the first and second finished machined and coated casings was 8. 591
pounds and 9. 042 pounds, respectively. This compares to an average weight of
finished forged casings of 8. 8 pounds, indicating that no significant weight penalty
is associated with the use of a cast compressor casing, Figure 39 shows the
improvement in material utilization,

3.3.2 Task IT - Engine Test Evaluation

The two finished casings were assembled into test engines, The first casing was
run for 60 hours in an endurance test, Views of the inner and outer contours of
this casing are shown in Figures 42 and 43, At the time of assembly, rotor tip
clearances were at nominal and typical of clearances that had been present on
previous tests using forged casings, A very light local rub was in evidence, as is
normal after engine disassembly, indicating that the dimensional stability of the
cast casing is comparable with forged casings,

The second finished casing was assembled into a second maturity engine and was
subjected to an official 150-hour endurance qualification test. The results of this
test were equally as successful as the 60-hour test.

The 150-hour test was conducted in accordance with DARCOM-C P-2222-02000B,
paragraph 4,5,1,6, The total operating time was 210 hours, 55 minutes and there
were 164 starts involved in the test cycle. There were no unexpected incidents
associated with the casing during test. Testing was conducted from 5 September
1978 to 19 September 1978,

The result of teardown inspection and any corrective action required are shown on
pages 77 to 80,

3.3.3 Task III - Data Presentation

Dimensional, material property and cost data contained in this report were pre-
sented to Government personnel in a briefing.
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TEARDOWN INSPECTION

D PRELIMINARY FLIGHT RATING TEST E] QUALIFICATION TEST

4 October 1978

DATE.
—‘\(\‘G"‘( MOCEL & SERIAL NO, 2. ENGINE SECTION: J. VENDOR: 4. PART SERIAL NO.
00-20"0)1-14A Cold Module
8. PART NuUM3ILR- 6. PART NAME- 7. HOURS ON PART:
6039TN4G01L Compressor Casinag 150 Hr. (Oual)

8. DISCREFANCY: (CODE: A-CRITICAL; B-MAJOR; C-MINOR)

(B

7] corrosion [ ] raiLure (] MisatiGhMENT [ ] wear
[ ] cracks [ ] rasteners [] nicks or scraTCHES [ ] macneTic imspecTION
k] oerosits (] foo. (] orereTion [ ] FENETRANT INSPECTION
] oiscoloration (] rreming [ ] Ppieces missing [ ] xrav
[—_ DISTORTICN : LOSS OF TORQUE : PITTING « SPALLING OTHER

9. DETAILS OF DISCREPANCY:
Possible over spray of graphite coating on inside (surface) rabbit

of casing flange.

SUBMITTED BY: A. Mello/C. Simmons

—
\ ‘; DISCUSSED WITH CONTRACTOR’S REPRESENTATIVE: 11. SAFETY OF FLIGHT INVOLVED:

naMe: J. Fallon | no X

ves[J

12. - CONTRACTOR'S COMMERNTS: =

Al-Si over spray observed in the fillet radius, This over spray results
from incomplete masking of the fillet area, New masking has been

purchased to correct this condition,

e
/ e o
SIGNATURE: s .

13. INSPECTION TEAM'S RECOMMENDATION:

NAVPRO Engincering recormends acceptance. /f?ﬁ?/@/ﬁé’/@

=i 7 .
ONAVPRO-QA concurs with NAVPRO Engineering reconmendation. ,” f’&/a.z/dli.//.w///

$0776 601 SIGHATYKE
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D PRELIMINARY FLIGHT RATING TEST

TEARDOWN INSPECTION

QUALIFICATION TEST

DATE. 4 October 1973

—'Ocmt MOUEL & SEAL NO.

2. ENGINE SECTION:

3. VENDOR:

4. PART SERIAL NO.

T700~2C7011-14A Cold Module

S. PARY N MBER 6. PART NAME: 7. “OURS ON PART:

€039T04G01 Compressor_Casing 150 Br. oual

8. DISCRCPANCY: (CODE: A-CRITICAL; B-MAJOR; C-MINCR)

[ ] corrosion (] FaiLure (] misaucument ] wear

[ ] cracks [ ] easteners [ ] nicks or scratches (L] macneric inspection
[ ] oerosits [] roo. (] operation [] peneTraNT INsPECTION
[ ] oiscotoration (] frerring [ ] rieces missitg [ ] xrav

[] oistorTion [ ] voss of TorquEe [ ] rirring - spaLuing F] orner

9. DETAILS OF DISCREPANCY:

Elliptical Holes on the fwd & aft flange at the 8:00/9:00 O'clock position of the
left half (aft looking forward) compressor casing.

S
\_/ DISCUSSED WITH CONTRACTOR'S REPRESENTATIVE:

A. Mello/C. Simmons

SUBMITTED BY:

a

11. SAFETY OF FLIGHT INVOLVED:

NAMEE 3 Fallon no (3 ves[]
12. CONTRACICR'S COMVMENTS: ;
These elliptical holes are per the drawing, and are required for
tolerance stack up for a bushing in the forward and aft VG
mounting brackets.
o
// 7
SIGNATURE: _/ /. A o
13. INSPECTION TEAM'S RECOMMENDATION: 2+

KAVPRO Enginecring recormends acceptance. /f%/é/ 82ty
e TR - O
ONAVPRO-QA concurs with NAVPRO Engineering recommendation.;“,jjtc‘ /(~ ek /1 z

SrIXe (0
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TEARDOWN INSPECTION

[J ereuminart ruGHt rating Test (R QuALIFIcATION TeST pate_4 October 1978
¥ NGINE MODEL & SER AL NO. 2. ENGINE SECTION: 3. VENDOR: 4. PART SERIAL NO.
2J0-207011-14A Cold !Module
9. PART NUMBER 6. PART MAME: 7. HOURS ON PART:
6032T04G01 Compressor Casing 150 Hr. Qual.

8. DISCRIFPANCY: (CODE: A-CRITICAL; B-MAJCR; C-MINOR)

[ ] ccrrosion (] Faure (] MisauGNMENT ] wear

[ ] cracrs U] rFasteners [] Nicks oR SCRATCHES [[] macuemic inspecTion
[ ] oerosits [] foo. ] operation [] peneTranT InsPECTION
k] oiscotoeation [ rremune [ ] pieces missing [ xrar

[ ] oistorion (] toss oF Torque [] piming . spALLING [] orwer

9.

DETAILS CF DISCREPANCY:

80% to 90% of the outside surface of the casing was discolored (ranging from
light to dark blue). Discoloration was noted on the machine surface of the

af

t flange (connects to diffuser casing). 1n addition,split line bolt holes

machine surface had similar discoloration.

A. Mello/C. Simmons

SUBMITTED BY:
7y DISCUSSED WITH CONTRACTOR'S REPRESENTATIVE: 11. SAFETY OF FLIGHT INVOLVED.
name:  J- Fallon ' no [ ves [

e

. CONTRACTOR’'S CCMMENTS: |

Discoloration is a result of temperature changes in the material, Some of
color results from tha heat treating in air per note 18 of the drawing,
Some color results from the operating temperature of the part during
engine running. This coloration has been observed on forped casing prior
to introduction and is not detrimental to material properties, A CID

has been processed to anneal the cast casing in vacuum, the same as the

forged casing is now done.
!
/' /
SIGNATURE: . et T ten
v 4

13.

INSPECTION TEAM’S RECOMMENDATION: ik

NAVPRO Engineering recommends acceptance. /%/;//),{947

; ¢ W s
NAVPRO-QA concurs with NAVPRO Engineering recommcndation.[./ & /< £ X4

O

or

726 164)) SIGNATURC.
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TEARDOWN INSPECTION

3
3 ereuminary rucnt rating rest ] quauiFicaTion TesT pare__4 October 1978

& ENGINE MCOEL & SERIAL MO, 2. ENGINE SFCTION: 3. VENDOR: 4. PART SERIAL NO.
T™00-207011~-14A Cold Module

8 FART NUMAER 6. PART WAME: 7. HOURS ON PART:

6039T046G0L Compressor Casing 150 Hr. Oual.

8. DISCREFANCY: (CODE: A-CRITICAL; B-MAJOR; C-MINOR)

(] corrosion ] Faiure [ | MisauiGNMENT [J wear

E CRACKS FASTEKERS [] nicks or scratcHEs [ macnemic inseection
L ] oeposits [ ] roo. (] oreration [ peneTraNT insPECTION
[ ] oiscororamion ] Fremming (] Pieces missing X-RAY

[} oistorTioN LOSS OF TORQUE PITTING - SPALLING X OTHER

9. DETAILS OF DISCREPANCY:
Heavy bench marks in the area below the flange which attaches to the
diffuser casing.

NOTE. For a production item, excessive hand benching was performed on casing,
which in turn, could affect our controllability for wall thickness.

susMmITTED BY. A, Mello/C. Simmons._

'.::,), 0'SCUSSED WITH CONTRACTOR'S REPRESENTATIVE: 11, SAFETY OF FLIGHT INVOLVED:
mmg:  J. Fallon NO ves [
12.- CONTRACTOR'S COMMENTS: I

Benching is done to remove gates in the casting which are used to control
the fxlllng'of the_aft: flange and cone section, Wall thickness is controlled
on the drawing. Will investigate relocating the pates away from the wall

of the cone or EDM process for better control of material removal in this
area.

/7
//’ ) /
SIGNATURE: £ "¢ £ ad

‘13. INSPECTION TEAM'S RECOMMENDATION:

NAVPRO Engfneering recommends acceptance. M/él /-94%;
ONAVPRO-—OI\ concurs with NAVPRO Engineering recommendation. z /)5('- /H-*’f:\ '(/' //\

30778 (641) SICNATUPRE.
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Figure 40,

Finished Machined and Fabricated Casting - View 1

31




Figure 41. Finished Machined and Fabricated Casting - View 2
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Figure 42. Assembled Casing After Engine Testing - Outer Contour
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Figure 43. Assembled Casing After Engine Testing - Inner Contour
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A value engineering cost analysis showed a total production quantity (250th unit-
shop cost) saving of $658 per engine in 1976 dollars, as a result of replacing
the forged compressor casing with a casting. The saving was due to the signifi-
cant reduction in labor input required, resulting from the elimination of milling
operations on the outer contour and the casting integrally of the actuator pads,
borescope bosses and associated hardware that had to be separately machined
and fabricated on the forged casing. The total material costs for the cast and
forged versions of the compressor casing are approximately equal.

3.4 Phase III - Preparation of Technical Data Package

A technical data package consisting of the following drawings developed during

the course of this program was assembled and presented to Government per-
sonnel:

Drawing No, Title

6038T86 (1 Sheet) Case, Compressor (Casting)
6039T 04 (2 Sheets) Case, Compressor (Matched Parts)
4096481-133 (7 Sheets) Set-Up Fixture

1001 Set-Up Fixture Photograph

1002 Set-Up Fixture Photograph

1003 Set-Up Fixture Photograph

No additional documents were generated in the Program,
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4.0. CONCLUSIONS

The one-piece cast compressor casing for the T700 engine was successfully
produced and completed engine endurance testing. Cast casings will be
introduced on T700 production engines in 1979.

Compressor casings can be successfully cast to near-net shape, including
several features that were previously required to be welded to the forging.

Final casting procedure was selected to utilize an expendable (lost wax/
ceramic) mold system for optimum flexibility in definition of external con-
tour and added features.

All mechanical property design requirements were met.

Two cast casings were fully machined, fabricated and assembled into

test engines. A 60-hour and a 150-hour endurance test were successfully
completed.

A value engineering cost analysis showed a 250th unit (shop cost) saving of
30. 6 manufacturing labor hours as compared to the forged casing due pri-

marily to reduced machining and welding on the cast casing.

Raw material utilization is markedly improved. As poured, the casting
weighs approximately 30 pounds compared to a 65-pound forging weight.

The predicted manufacturing cost savings of $658 (250th unit) per engine
in 1976 dollars has been verified.
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APPENDIX A - MECHANICAL PROPERTIES

This appendix details physical property tests performed on the cast mater-
ial, Ti 6A1-4V, used in the compressor casing. Chemical analyses of
the master heats used are included in Table A-1, The locations in the
casting from which specimens were machined are shown in Figure A-1,

Tensile, stress rupture, high- and low-cycle fatigue, crack growth rate
and fracture toughness tests at room and elevated temperature were run.

Microstructure was examined,

Comparative ballistic data on cast and forged Ti 6 A1-4V developed prior
to the present program is presented to cover blade containment capability.
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B. Discussion

i

3.

Tensile Properties (Table A-2)

Bars conforming to General Electric drawing 4013163-100-3 (Fig-
ure A-16) were tested per ASTM E8 and ASTM E21 at 75°F, 200°F,
400°F, 600°F, and 800°F, The strain rate through the 0. 2% yield
point was 0, 005 in/in. /min. and the head rate thence to failure was
0.5 in/min. Results are shown in Figures A-2, A-3, A-4, A-5.
Ultimate tensile strength and yield strength show an approximate
10% reduction from forged Ti 6 A1-4V average properties. The
elongation was reduced to 8 to 12% and the reduction of area to 13
to 32%.

Stress Rupture Properties (Table A-3)

Stress rupture specimens conforming to General Electric drawing
4013163-100-3 (Figure A-16) were tested per ASTM E139 at 750°F,
800°F, 850°F, 900°F, and 1000°F,

Rupture and creep comparisons of the cast specimen results with
average forging experience are given in Figures A-6, A-7, A-8.
The figures show a correlation between cast and forged properties,
particularly for higher Larson-Miller parameters, A comparison
with the maximum casting temperature and stress for 5000 hours
shows the high margin of safety present,

Low-Cycle Fatigue Properties (Table A-5)

Low-cycle fatigue bars conforming to General Electric drawing
4013163-140TL-3 (Figure A-17) polished lon%itudi.nally to a surface
finish of 8 or less were tested at 75°F, 200 F, 400°F, and 600°F
under strain-controlled conditions. The comparison of the cast data
with average forging experience is given in Figure A-9, Pseudo
stress is stress calculated from actual strain measurements apply-
ing the modulus of elasticity for the material. The average cast
results show a drop of approximately 20 ksi in alternating pseudo
stress. A comparison with the design point of 15, 000 cycles at the
maximum casing stress shows the high safety margin.
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High-Cycle Fatigue Properties (Table A-4)

Bars conforming to General Electric drawing 4013163-127-1 (Figure
A-18) polished longitudinally to a surface finish of $/ or less were
tested at 75°F and 600°F,

High-cycle fatigue results are presented as S-N curves (Figures A-10
and A-11) and as modified Goodman diagrams (Figures A-12

and A-13) in which the alternating stress for 107 cycles (100 hrs, )
is plotted versus the means stress. The high-cycle fatigue strength
shows approximately a 40% reduction from average forged properties.
Fortunately the compressor casing is not subject to any appreciable
high-cycle fatigue loading.

Crack Growth Rate (Tables A-6 and A-7)

Figures A-14 and A-15 give plots of crack growth rate versus stress
intensity range performed at room: temperature and 600°F on spec-
imens conforming to General Electric drawing 4013163-176 (Figure
A-19),

The curves show that little difference exists between the crack growth
rate at room temperature and 600°F and that at room temperature,
where a comparison with forging data is available, the crack growth
rate in cast material is the same or slightly slower than in wrought
metal,

Fracture Toughness (Table A-8)

While it was planned to include fracture toughness testing as part of
the program, because of the dimensions of the casing a valid fracture
toughness specimen in accordance with ASTM Specification E399
could not be obtained. Data obtained is given in Table A-8, Speci-
mens conformed to General Electric drawing 4013163-176 (Figure
A-19),

Microstructure

Figures A-20 through A-22 show the microstructures of specimens,
The figures show a typical annealed alpha-beta titanium structure
with a matrix of transformed beta phase containing acicular alpha
and alpha at the prior beta grain boundaries,

Since . 025 was chemically milled from all surfaces of the cast cas-
ings, no evidence of oxygen-rich alpha case (typically found on titan-
ium castings in the as-cast condition) was observed,
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Figure A-2., Ultimate Tensile Strength vs. Temperature
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Ballistic Impact (Table A-9)

Work done prior to the start of the present program compared wrought
and cast Ti 6 A1-4V material in ballistic impact testing. Plates of
each material were annealed at 1300°F for 2 hours and ground to

. 088 nominal thickness. Tests were conducted using 240 grain cyl-
indrical steel simulated fragments (Re = 35). Velocity of the sim-
ulated fragment was varied by controlling the amount of powder
charge in a . 50-caliber Vulcan case. The energy of the projectiles
ranged from 67.5 ft-1b to 307, 8 ft-lb, I was concluded that the
wrought and cast forms of Ti 6 A1-4V possess equal containment
capability.
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Figure A-12, Modified Goodman Diagram (Room Temperature) -
Casting vs. Forging
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Room Temperature - Casting vs. Forging
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Figure A-21, Typical Microstructure Showing Alpha Platelets
(light) and Intergranular Beta (dark)
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(a) 100X

(b) 165X

Figure A-22, Typical Fracture Surfaces of Failed Test Bars in HCF (a) and
LCF (b) Showing Fatigue Origins, O and P and the Direction
of Propagation (large arrows)
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TABLE A-2
TENSILE DATA

Nominal Gage Section: 0.25 in. dia. x 1.0 in, long

Strain Rate through 0.2% Yield: 0.005 in./in. /min,

Head Rate thence to Failure: 0.05 in. /min.

.2%

Specimen | Temp UTS Y. S. Elong. R. A.
No. (°F) (ksi) (ksi) (%) %)
3-1 75 136.0 127.3 7.2 13.1
9-1 75 131.9 123.0 7.6 23.2
10-13 75 132.17 122.1 7.3 15.3
3-2 200 116.8 102.9 6.9 19.3
3-53 200 112.0 93.2 5.6 16.8
9-2 200 117.8 104.7 6.5 17.8
10-14 | 200 117.3 82.8 9.8 23.6
3-3 400 101.1 87.0 8.8 24,2
3-54 | 400 98.2 86.6 8.5 24.9
9-3 400 98.6 85.2 10.9 25.3
10-15 400 103.1 81.2 10.3 22.5
3-4 600 87.9 72.8 12.4 27.0
9-4 600 84.17 63.9 11.3 27.2
10-16 600 88.1 69.0 11.8 26.3
3-5 800 78.9 63.9 11.5 28.4
3-55 800 71.9 63.0 10.7 27.6
9-5 800 78.1 63.5 11.4 31.7
10-17 800 80. 4 64.9 10.0 32.0
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TABLE A-3
STRESS-RUPTURE DATA

Specimen Temp Stress Rupt. Life Elong. R, A,

No. (°F) (ksi) (hr) (%) %)
9-9 700 65.0 793. 3(a) 0.5 -

10-21 700 70.0 600. 4(a) 0.9 --
9-10 750 77.0 737.0 9.2 16.3
3-9 750 78.0 1,378.0 9.8 20.0

10-20 800 60.0 2,39.1 8.0 12.8
3-7 800 65.0 1,312.0 7.1 18.4
9-12 800 72.0 142, 7 7.7 15.8
3-56 800 73.0 608.3 9.2 14.5
3-10 800 73.0 96. 5(b) 11.0 27.1

10-23 800 74.0 130. 8 8.3 17.3
3-58 800 75.0 98.9 10.0 23.5

10-22 800 77.0 (c) 13.2 38.1
9-8 800 87.0 (c) 7.9 28.17

10-24 850 58.0 287.3(d) 7.9 17.0
3-12 850 62.0 172.3 6.3 18.9

10-21 850 65.0 113.2(e) 7.4 13.5
9-9 850 68.0 38. 7(f) 8.2 15.0
3-517 850 73.0 4.3 8.6 23.6
3-60 850 75.0 (e) 7.9 28,17
9-11 900 40.0 667.7 8.0 11.8
3-11 900 42,0 405.4 7.1 15. 8
3-59 900 50,0 141.2 8.1 16.0
3-60 900 55.0 62.1 i | 13.0

10-19 900 60.0 32.1 7.5 13.4
9-7 900 66.0 5.1 10.3 20.7

10-18 1000 40,0 15.3 6.6 8.2
9-6 1000 46.0 3.0 4.5 7.5

Notes:

(a) Specimen unloaded without failure at time shown.

(b) Beam was accidentally bumped, causing failure at this time.

(c) Specimen failed on loading.

(d) Specimen lost temperature (power loss) at 97,6 hours - was reloaded

and run to failure.
(e) Specimen previously tested at 700°F/65. 0 ksi without failing
(results above).
(f) Specimen previously tested at 700°F/70. 0 ksi without failing (results

above).
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TABLE A-4
HIGH-CYCLE FATIGUE DATA

Specimen | Temp A Stress, ksi Cycles
No. (°F) | Ratio Max. Alt, (x 103) Results

9-53 75 .95 88.3 43.0 289 Failure

9-54 75 .95 82,1 40.0 115 Failure
10-61 75 . 95 71.8 35.0 1,424 Failure
18843-1 75 .95 67.17 33.0 97 Failure
18843-8 75 . 95 61.6 30.0 50 Failure

9-55 75 .67 89.7 36.0 50 Failure
10-62 75 .67 77.3 31.0 102 Failure
18843-2 75 .67 67.3 27.0 267 Failure
18843-9 75 . 67 67.3 27.0 153 Failure

9-56 75 .67 62.3 25.0 10, 455 Runout
18843-3 75 L 50.0 50.0 60 Failure
18843-10 75 © 40.0 40.0 92 Failure
18843-15 75 © 38.0 38.0 66 Failure

9-517 75 © 36.0 36.0 10, 753 Runout
18843-13 75 © 35,0 35.0 10, 000 Runout

9-58 600 .95 92.4 45.0 9 Failure
10-65 600 . 95 71.8 35.0 63 Failure

9-60 600 .95 61.5 30.0 1, 982 Failure
18843-4 600 . 95 57.5 28.0 98 Failure

3-37 600 . 95 53.4 26.0 829 Failure
10-64 600 .95 51.3 25.0 9, 684 Thread Failure

9-59 600 .67 79.8 32,0 595 Thread Failure

9-36 600 . 67 79.8 32.0 34 Failure
10-66 600 .67 69.8 28.0 96 Failure
10-63 600 .67 64.8 26.0 99 Failure

3-38 600 .67 54.8 22,0 1, 257 Failure
18843-6 600 .67 54.8 22,0 336 Failure
18843-11 | 600 .67 20,0 8.0 864 Failure in defect
10-52 600 L 39.0 39.0 114 Failure
18843-12 | 600 o 37.0 37.0 110 Failure
18843-7 600 L 37.0 37.0 680 Failure in defect
10-51 600 L 37.0 37.0 10, 000 Runout
10-67 600 © 35.0 35.0 8, 638 Failure
18843-14 | 600 L 35.0 35.0 10,000 Runout
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TABLE A-8
FRACTURE TOUGHNESS DATA

Specimen Spec. Thickness Temperature KQ
No, B (in.) (°F) ksi /(in.)
3-72 .418 5 78.2
3-78 .418 69.5
3-79 .415 74.5
3-80 . 417 70.5
3-81 .418 68.8
10T91 .378 72.8
10B9 .499 70.17
10B97 . 499 69.5
10B98 .499 72.9
3-71 .411 600 61.4
3-76 .419 58.5
3-717 .418 57.2
3-84 .418 65.0
3-85 .414 56. 0
10T93 .369 50.5
10B99 .498 59.7
10B101 . 498 56.5
10B102 . 499 Y 60.0
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TABLE A-9
CONTAINMENT CAPABILITY OF WROUGHT AND CAST Ti 6A1-4V
(BALLISTIC IMPACT TESTS)

Wrought Cast
V (ft /sec ) | E (ft -1bs) | Result V (ft /sec ) | E (ft -1bs) | Result
356 67.5 A 390 81.0 A
441 103.6 B 473 119, 2 B
539 154.8 C 536 153.1 C
725 280.1 D 686 250,1 D
760 307.8 D

Figure A-23 Impacted Plate Appearance
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APPENDIX B - MANUFACTURING METHODS REPORT

SCOPE

This report details the entire process with quality controls as developed

for producing precision cast titanium alloy compressor casings.

Special

tooling required and quality controls are identified and quality standards

are defined.

SEQUENCE OF CASTING OPERATIONS

Description

Inject wax patterns

Assemble wax patterns and gates/size as required
Inspect patterns (visual)

Build ceramic shell molds

Dry shell molds

Remove wax (Autoclave)

Preheat molds (gas-fired oven)

Cast (skull-melting furnace)

Remove shell material

Cut and trim gates

Rough machine inner contour

Mask any surface defects (to be repaired later)
Chemically-mill surface

Grit blast

Visual inspection

Radiographic inspection

Zyglo

Bench and weld repair (as required)
Anneal (1300°F - 1 to 2 hours) in vacuum
Grit blast

Dimensional inspection

Final Zyglo

Final radiographic inspection
Identification marking

Pack and ship
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Quality Control Plan

A quality control plan was established by General Electric Quality
Control. Major items included in the plan are:

a) 100% radiographic inspection

b) 100% fluorescent penetrant inspection

¢) 100% dimensional inspection of initial part from
permanent tooling

d) 100% inspection of outer contour radii on all castings

e) Tensile and stress rupture test to qualify each
master heat,

Master Heat

The master heat chemistry, tensile and stress rupture properties
are tested by the casting source, Certification of testing results
along with additional test bars are supplied with each casting lot.
Tensile testing is done in accordance with ASTM E8 and E21 and
stress rupture testing to ASTM E139., The material specification
is General Electric B50TF102,

Non-Destructive Testing

Non-destructive testing of castings is performed at the casting source
and reviewed by a General Electric Company quality control repre-
sentative, 100% inspection is performed. Final radiographs are
supplied with each casting shipment, Details of inspection performed
are included in Section G.

Dimensional Inspection

Initial parts from a pattern die are subjected to 100% dimensional
layout. Any tooling modifications require a layout of the affected
areas. One part from each casting lot is checked for external radial
dimensions on a three-axis measuring machine using set-up fixture
4096481-133.

Quality Inspection Operations

1. Operations at Casting Source:

a, First lnspection - Visual inspection for non-fill and other
gross defects.
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b. Zyglo (preliminary) - Fluorescent penetrant inspect per G. E,
Specification P3TF2. Limits per drawing 6038 T86.

c. Alpha Case Removal Verification - Metallographic and micro-

- hardness examination of test specimen which was processed
through the Chemical Mill cycle with parts,

d. Zyglo (preliminary) - Flucrescent penetrant inspect per G. E.
Specification P3TF2. Limits per drawing 6038T86.

e. Visual (preliminary) - Examination for surface pits, shrink-
age, gas holas, positive metal and other indications re-
quiring repair/rework,

f. X-ray (preliminary) - Process per G. E. Specification P3TF5,
Class A. Interpret to ASTM E192 - limits per drawing.

g. Zyglo (final) - Fluorescent penetrant inspect per G, E. Spec-
ification P3TF2. Limits per drawing.

h., Visual (final) - Examination for surface pits, shrinkage, gas
holes, positive metal and other indications requiring repair/
rework,

i. X-ray (final) - Process per G. E, Specification P3TF5, Class
A. Interpret to ASTM E192 - limits per drawing.
2. Operations at General Electric:

a. Review and file material certifications.
b. Review and file radiographs,

c. Dimensionally inspect for outer contour radial dimensions.
Frequency one piece per casting lot,

d. Visually inspect 100%.
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